Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
2.
Microb Cell Fact ; 23(1): 20, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218907

ABSTRACT

The increasing interest in environmental protection laws has compelled companies to regulate the disposal of waste organic materials. Despite efforts to explore alternative energy sources, the world remains heavily dependent on crude petroleum oil and its derivatives. The expansion of the petroleum industry has significant implications for human and environmental well-being. Bioremediation, employing living microorganisms, presents a promising approach to mitigate the harmful effects of organic hydrocarbons derived from petroleum. This study aimed to isolate and purify local yeast strains from oil-contaminated marine water samples capable of aerobically degrading crude petroleum oils and utilizing them as sole carbon and energy sources. One yeast strain (isolate B) identified as Candida tropicalis demonstrated high potential for biodegrading petroleum oil in seawater. Physiological characterization revealed the strain's ability to thrive across a wide pH range (4-11) with optimal growth at pH 4, as well as tolerate salt concentrations ranging from 1 to 12%. The presence of glucose and yeast extract in the growth medium significantly enhanced the strain's biomass formation and biodegradation capacity. Scanning electron microscopy indicated that the yeast cell diameter varied based on the medium composition, further emphasizing the importance of organic nitrogenous sources for initial growth. Furthermore, the yeast strain exhibited remarkable capabilities in degrading various aliphatic and aromatic hydrocarbons, with a notable preference for naphthalene and phenol at 500 and 1000 mg/l, naphthalene removal reached 97.4% and 98.6%, and phenol removal reached 79.48% and 52.79%, respectively. Optimization experiments using multi-factorial sequential designs highlighted the influential role of oil concentration on the bioremediation efficiency of Candida tropicalis strain B. Moreover, immobilized yeast cells on thin wood chips demonstrated enhanced crude oil degradation compared to thick wood chips, likely due to increased surface area for cell attachment. These findings contribute to our understanding of the potential of Candida tropicalis for petroleum oil bioremediation in marine environments, paving the way for sustainable approaches to address oil pollution.


Subject(s)
Candida tropicalis , Petroleum , Humans , Candida tropicalis/metabolism , Biodegradation, Environmental , Yeasts/metabolism , Petroleum/metabolism , Hydrocarbons/metabolism , Phenol/metabolism , Naphthalenes/metabolism
3.
J Genet Eng Biotechnol ; 21(1): 165, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085387

ABSTRACT

BACKGROUND: As a white biotechnological trend, esterases are thought to be among the most active enzymes' classes in biocatalysis and synthesis of industrially importance organic compounds. Esterases are used in many applications such as the manufacture of pharmaceuticals, cosmetics, leather, textile, paper, food, dairy products, detergents, and treatment of some environmental pollutants. RESULTS: A poly-histidine moiety was added to the C-terminal end of the Geobacillus sp. gene encoding carboxyl esterase (EstB, ac: KJ735452) to facilitate one-step purification. This recombinant protein was successfully expressed in Escherichia coli (E. coli) under control of Lambda promoter (λ). An open reading frame (ORF) of 1500 bps encoding a polypeptide of 499 amino acid residues and a calculated molecular weight (54.7 kD) was identified as carboxyl-esterase B due to its conserved glycine-X-serine-X-glycine motif (G-X-S-X-G) and its high similarity toward other carboxyl esterases, where the 3-D tertiary structure of EstB was determined based on high homology % (94.8) to Est55. The expression was scaled up using 7-L stirred tank bioreactor, where a maximum yield of enzyme was obtained after 3.5 h with SEA 51.76 U/mg protein. The expressed protein was purified until unity using immobilized metal affinity chromatography (IMAC) charged with cobalt and then characterized. The purified enzyme was most active at pH 8.0 and remarkably stable at pH (8-10). Temperature optimum was recorded at 65 °C, and it kept 70% of its activity after 1-h exposure to 60 °C. The active half-live of enzyme was 25 min at 70 °C and a calculated T melting (Tm) at 70 °C. The determined reaction kinetics Michaelis-Menten constant (Km), maximum velocity rate (Vmax), the turnover number (Kcat), and catalytic efficiency (Kcat/Km) of the pure enzyme were found 22.756 mM, 164.47 U/ml (59.6 min-1), and (2.619 mol/ min), respectively. CONCLUSION: Creation of a recombinant 6 × -His estB derived from a thermophile Geobacillus sp. was performed successfully and then overexpressed under λ-promoter. In a bench scale bioreactor, the overexpression was grown up, followed by one-step purification and biochemical characterization. The recorded promising pH and temperature stability properties suggest that this expressed carboxyl esterase could be used in many industrial sectors.

4.
Virol J ; 20(1): 249, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37904234

ABSTRACT

BACKGROUND: Respiratory viruses, particularly adenoviruses (ADV), influenza A virus (e.g., H1N1), and coronaviruses (e.g., HCoV-229E and SARS-CoV-2) pose a global public health problem. Therefore, developing natural wide-spectrum antiviral compounds for disrupting the viral life cycle with antioxidant activity provides an efficient treatment approach. Herein, biosurfactant (Sur) and C50 carotenoid pigment (Pig) of haloalkaliphilic archaeon Natrialba sp. M6 which exhibited potent efficacy against hepatitis and anti-herpes simplex viruses, were investigated against pulmonary viruses. METHODS: The cytotoxicity of the extracted Sur and Pig was examined on susceptible cell lines for ADV, HIN1, HCoV-229E, and SARS-CoV-2. Their potential against the cytopathic activity of these viruses was detected with investigating the action modes (including, virucidal, anti-adsorption, and anti-replication), unveiling the main mechanisms, and using molecular docking analysis. Radical scavenging activity was determined and HPLC analysis for potent extract (Sur) was performed. RESULTS: All current investigations stated higher anti-pulmonary viruses of Sur than Pig via mainly virucidal and/or anti-replicative modes. Moreover, Sur had stronger ADV's capsid protein binding, ADV's DNA polymerase inhibition, suppressing hemagglutinin and neuraminidase of H1N1, and inhibiting chymotrypsin-like (3CL) protease of SARS-CoV-2, supporting with in-silico analysis, as well as radical scavenging activity than Pig. HPLC analysis of Sur confirmed the predominate presence of surfactin in it. CONCLUSION: This study declared the promising efficacy of Sur as an efficient pharmacological treatment option for these pulmonary viruses and considered as guide for further in vivo research.


Subject(s)
Coronavirus 229E, Human , Influenza A Virus, H1N1 Subtype , Antiviral Agents/therapeutic use , Molecular Docking Simulation , SARS-CoV-2 , Carotenoids/pharmacology
5.
Sci Rep ; 13(1): 2550, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36781949

ABSTRACT

It is crucial to identify more biological adsorbents that can efficiently uptake metals from wastewater. Dry haloalkaliphilic archaea Natronolimnobius innermongolicuswas evaluated for Cd ions biosorption. The optimal operating conditions (pH, biomass dose, initial metal concentration, contact time, and isotherms models) were tested. Biosorption process is influenced by the metal's solution pH with maximum removal of 83.36% being achieved at pH 8. Cadmium ions uptake reaches equilibrium in about 5 min of biosorption process. The Langmuir model was determined to better fit the Cd(II) biosorption by dry archaea. The maximal uptake capacity (qmax) of Cd(II) was 128.21 mg/g. The effect of multi-component system on biosorption behaviour of Pb, Ni, Cu, Fe, and Cd ions by immobilized dried archaeal cells, dried archaeal cells, and dried bryozoa was studied using Plackett-Burman experimental design. The investigated biosorbents were effective at removing metals from contaminated systems, particularly for Fe, Pb, and Cd ions. Moreover, the interaction behaviour of these metals was antagonistic, synergistic, or non-interactive in multi-metals system. SEM, EDX, and FTIR spectra revealed changes in surface morphology of the biomass through the biosorption process. Finally, continuous adsorption experiment was done to examine the ability of immobilized biomass to adsorb metals from wastewater.


Subject(s)
Cadmium , Water Pollutants, Chemical , Cadmium/analysis , Wastewater , Kinetics , Adsorption , Lead , Hydrogen-Ion Concentration , Biomass , Ions
6.
Sci Rep ; 12(1): 16577, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195643

ABSTRACT

Halophilic archaea is considered an promising natural source of many important metabolites. This study focused on one of the surface-active biomolecules named biosurfactants produced by haloarchaeon Natrialba sp. M6. The production trend was optimized and the product was partially purified and identified using GC-Mass spectrometry. Sequential optimization approaches, Plackett-Burman (PB) and Box-Behnken Designs (BBD) were applied to maximize the biosurfactants production from M6 strain by using 14 factors; pH, NaCl, agitation and glycerol; the most significant factors that influenced the biosurfactant production were used for Response Surface Methodology (RSM). The final optimal production conditions were agitation (150 rpm), glycerol (3%), NaCl (20.8%), pH (12) and cultivation temperature (37°C). GC-Mass spectrometry for the recovered extract revealed the presence of a diverse group of bipolar nature, hydrophobic hydrocarbon chain and charged function group. The majority of these compounds are fatty acids. Based on results of GC-MS, compositional analysis content and Zetasizer, it was proposed that the extracted biosurfactant produced by haloarchaeon Natrialba sp. M6 could be a cationic lipoprotein. The antiviral activity of such biosurfactant was investigated against hepatitis C (HCV) and herpes simplex (HSV1) viruses at its maximum safe doses (20 µg/mL and 8 µg/mL, respectively). Its mode of antiviral action was declared to be primarily via deactivating viral envelopes thus preventing viral entry. Moreover, this biosurfactant inhibited RNA polymerase- and DNA polymerase-mediated viral replication at IC50 of 2.28 and 4.39 µg/mL, respectively also. Molecular docking studies showed that surfactin resided well and was bound to the specified motif with low and accepted binding energies (ΔG = - 5.629, - 6.997 kcal/mol) respectively. Therefore, such biosurfactant could be presented as a natural safe and effective novel antiviral agent.


Subject(s)
Hepatitis C , Herpes Simplex , Antiviral Agents/pharmacology , DNA-Directed DNA Polymerase , Fatty Acids , Glycerol , Halobacteriaceae , Hepacivirus/metabolism , Humans , Molecular Docking Simulation , Sodium Chloride , Surface-Active Agents/chemistry
7.
Microb Cell Fact ; 21(1): 82, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35562834

ABSTRACT

The production of bioelectricity via the anaerobic oxidation of organic matter by microorganisms is recently receiving much interest and is considered one of the future alternative technologies. In this study, we aimed to produce electrical current by using facultative halophilic archaeon Natrialba sp. GHMN55 as a biocatalyst at the anode of a microbial fuel cell (MFC) to generate electrons from the anaerobic breakdown of organic matter to produce electrical current. Since the MFC's performance can be affected by many factors, the Plackett-Burman experimental design was applied to optimize the interaction between these factors when tested together and to identify the most significant factors that influence bioelectricity generation. We found that the factors that significantly affected electrical current generation were casein, inoculum age, magnet-bounded electrodes, NaCl, resistor value, and inoculum size; however, the existence of a mediator and the pH showed negative effects on bioelectricity production, where the maximum value of the 200 mV voltage was achieved after 48 h. The optimum medium formulation obtained using this design led to a decrease in the time required to produce bioelectricity from 20 days (in the basal medium) to 2 days (in the optimized medium). Also, the overall behavior of the cell could be enhanced by using multiple stacked MFCs with different electrical configurations (such as series or parallel chambers) to obtain higher voltages or power densities than the single chambers where the series chambers were recorded at 27.5 mV after 48 h of incubation compared with 12.6 mV and 1.1 mV for parallel and single chambers, respectively. These results indicate that the order of preferred MFC designs regarding total power densities would be series > parallel > single.


Subject(s)
Archaea , Bioelectric Energy Sources , Electricity , Electrodes , Halobacteriaceae
8.
Sci Rep ; 12(1): 2181, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140278

ABSTRACT

Bacterial cellulose (BC) is an ecofriendly biopolymer with diverse commercial applications. Its use is limited by the capacity of bacterial production strains and cost of the medium. Mining for novel organisms with well-optimized growth conditions will be important for the adoption of BC. In this study, a novel BC-producing strain was isolated from rotten fruit samples and identified as Lactiplantibacillus plantarum from 16S rRNA sequencing. Culture conditions were optimized for supporting maximal BC production using one variable at a time, Plackett-Burman design, and Box Behnken design approaches. Results indicated that a modified Yamanaka medium supported the highest BC yield (2.7 g/l), and that yeast extract, MgSO4, and pH were the most significant variables influencing BC production. After optimizing the levels of these variables through Box Behnken design, BC yield was increased to 4.51 g/l. The drug delivery capacity of the produced BC membrane was evaluated through fabrication with sodium alginate and gentamycin antibiotic at four different concentrations. All membranes (normal and fabricated) were characterized by scanning electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, and mechanical properties. The antimicrobial activity of prepared composites was evaluated by using six human pathogens and revealed potent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus mutans, with no detected activity against Pseudomonas aeruginosa and Candida albicans.


Subject(s)
Anti-Infective Agents/pharmacology , Cell Culture Techniques/methods , Cellulose/biosynthesis , Lactobacillaceae/chemistry , Lactobacillaceae/genetics , Membranes/chemistry , Alginates/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cellulose/chemistry , Cellulose/isolation & purification , Culture Media , Gentamicins/pharmacology , Lactobacillaceae/isolation & purification , Lactobacillaceae/metabolism , Microscopy, Electron, Scanning , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
9.
J Genet Eng Biotechnol ; 20(1): 20, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35137293

ABSTRACT

BACKGROUND: Wadi El Natrun microorganisms have been considered as a new resource for natural products due to its extreme condition of salinity and alkalinity. Therefore, this study was devoted to generate metagemic library from soils collected from such an extreme environment in order to clone a novel cellulase for physique industrial applications. RESULTS: Total soil-DNA was successfully extracted, and then digested by different restriction enzymes. Purified fragments ranged ~ 200-6500 bp were ligated and were cloned into plasmid cloning vector (pUC19) by using Escherichia coli DH5α (E. coli) host cells. A constructed metagenomic library composed of 270 clones was screened on carboxymethylcellulose (CMC) agar plate where the active clones had been characterized by the formation of the yellowish halo zone. Thereafter, clone 1 was selected as the most active as being based on cellulase activity quantification (19 µ/ml). Plasmid related to clone 1 encoded cellSNSY gene of approximately 1.5 kb was subjected to molecular characterization; the obtained partial sequence of 861 bps encoded 287 amino acids showing 76% similarity to the endoglucanase gene of Bacillus amyloliquefaciens. The recombinant cellSNSY was expressed under lacz promoter at 1 mM of isopropyl ß-d-1-thiogalactopyranoside (IPTG), giving 21 µ/ml cellulase after ~ 27 h. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and an activity staining of the recombinant cellSNSY which revealed an active band with a molecular mass ~ 59 kDa appeared in the induced sample. The maximum enzyme activity of crude cellSNSY was observed at 45 °C and for a pH of 8.5. Interestingly, the enzyme activity was slightly inhibited by ethylenediamine tetraacetic acid (EDTA) and methanol. It showed high resistance to the tested heavy metals and the surfactant which ordered Zn> (SDS,Fe)>Mn>Cu. CONCLUSIONS: This study established an easy and a skillful way to clone/express a new found cellulase gene(s) under lacZ promoter. The isolated recombinant cellSNSY showed 76% similarity to endoglucanase gene, and the enzyme showed tolerance to the mostly tested agents including heavy metals, surfactant, solvents, and EDTA. Additionally, the studied recombinant showed a high stability up to 55 °C and for alkaline pH 8.5. These features make it an ample and viable for many applications.

10.
Sci Rep ; 11(1): 17564, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475429

ABSTRACT

This study highlighted the exploitation of mathematical models for optimizing the growth conditions that give the highest phosphatase productivity from a newfound Lysinibacillus sp. strain APSO isolated from a slime sample. Mathematical models facilitate data interpretation and provide a strategy to solve fermentation problems. Alkaline phosphatase (ALP) throughput was enhanced by 16.5-fold compared to basal medium based on a sequential optimization strategy that depended on two-level Plackett-Burman design and central composite design. The additional improvement for volumetric productivity and specific production yield was followed in a 7 L bench-top bioreactor to evaluate microbial growth kinetics under controlled and uncontrolled pH conditions. The pH-controlled batch cultivation condition neither supported cell growth nor enhanced ALP productivity. In contrast, the uncontrolled pH batch cultivation condition provided the highest ALP output (7119.4 U L-1) and specific growth rate (µ = 0.188 h-1) at 15 h from incubation time, which was augmented > 20.75-fold compared to the basal medium. To the authors' knowledge, this study is the second report that deals with how to reduce the production cost of the ALP production process via utilization of agro-industrial waste, such as molasses and food waste (eggshell), as a nutrimental source for the improvement of the newfound Lysinibacillus sp. strain APSO ALP throughput.

12.
Sci Rep ; 11(1): 14543, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267231

ABSTRACT

Incubation parameters used for the creation of a protein lysate from enzymatically degraded waste feathers using crude keratinase produced by the Laceyella sacchari strain YNDH were optimized using the Response Surface Methodology (RSM); amino acids quantification was also estimated. The optimization elevated the total protein to 2089.5 µg/ml through the application of the following optimal conditions: a time of 20.2 h, a feather concentration (conc.) of 3 g%, a keratinase activity of 24.5 U/100 ml, a pH of 10, and a cultivation temperature of 50 °C. The produced Feather Protein Lysate (FPL) was found to be enriched with essential and rare amino acids. Additionally, this YNDH enzyme group was partially purified, and some of its characteristics were studied. Crude enzymes were first concentrated with an Amicon Ultra 10-k centrifugal filter, and then concentrated proteins were applied to a "Q FF" strong anion column chromatography. The partially purified enzyme has an estimated molecular masses ranging from 6 to 10 kDa. The maximum enzyme activity was observed at 70 °C and for a pH of 10.4. Most characteristics of this protease/keratinase group were found to be nearly the same when the activity was measured with both casein and keratin-azure as substrates, suggesting that these three protein bands work together in order to degrade the keratin macromolecule. Interestingly, the keratinolytic activity of this group was not inhibited by ethylenediamine tetraacetic acid (EDTA), phenylmethanesulfonyl fluoride (PMSF), or iron-caused activation, indicating the presence of a mixed serine-metallo enzyme type.


Subject(s)
Bacillales/enzymology , Feathers/chemistry , Peptide Hydrolases/metabolism , Proteins/metabolism , Amino Acids/analysis , Animals , Chickens , Detergents/chemistry , Enzyme Stability , Feathers/metabolism , Hydrogen-Ion Concentration , Peptide Hydrolases/isolation & purification , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Proteins/chemistry , Regression Analysis , Solvents/chemistry , Temperature , Waste Products
13.
Sci Rep ; 11(1): 6071, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727590

ABSTRACT

To meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efficient production strategies. Using sugarcane molasses and biogenic apatite as low-cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett-Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically significant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7-L stirred-tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a significant increase in both the volumetric and specific productivities of ALP; the alkaline phosphatase throughput 6650.9 U L-1, and µ = 0.0943 h-1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH-controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite.


Subject(s)
Alkaline Phosphatase , Bacillus , Bacterial Proteins , Alkaline Phosphatase/biosynthesis , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/isolation & purification , Bacillus/enzymology , Bacillus/growth & development , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification
14.
J Genet Eng Biotechnol ; 18(1): 23, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32617705

ABSTRACT

BACKGROUND: Due to a multitude of industrial applications of keratinolytic proteases, their demands are increasing. The present investigation studied the production and monitoring of the most possible multi-functional applications of YNDH thermoalkaline keratin-degrading enzyme. RESULTS: This work is considered the first that reported YNDH strain closely related to Laceyella sacchari strain; YNDH is a producer of protease/keratinase enzyme and able to degrade natural keratin such as feathers, wool, human hairs, and nails. Experimental design Plackett-Burman (PBD) was applied to evaluate culture conditions affecting the production of thermoalkaline protease/keratinase. Afterwards, Box-Behnken design (BBD) was applied to find out the optimum level of significant variables namely, NH4Cl, yeast extract, and NaNO3 with a predicted activity of 1324.7 U/ml. Accordingly, the following medium composition and parameters were calculated to be optimum (%w/v): NH4Cl, 0.08; feather, 1; yeast extract, 0.04; MgSO4.7H2O, 0.02; NaNO3, 0.016; KH2PO4, 0.01; K2HPO4, 0.01; pH, 8; inoculum size; 5%, cultivation temperature (Temp.) 45 °C and incubation time 48 h. The studied enzyme can degrade keratin-azure, remove proteinaceous materials, and is able to remove hairs from goat hides. These interesting characteristics make this enzyme a good candidate in many applications especially in detergent (Det.), in leather industries, and in pharmaceuticals particularly in nail treatment. CONCLUSION: The promising properties of the newly keratin-degrading protease enzyme from Laceyella sacchari strain YNDH would underpin its efficient exploitation in several industries to cope with the demands of worldwide enzyme markets.

15.
Sci Rep ; 10(1): 5986, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32249805

ABSTRACT

Halophilic archaea are a promising natural source of carotenoids. However, little information is available about the biological impacts of these archaeal metabolites. Here, carotenoids of Natrialba sp. M6, which was isolated from Wadi El-Natrun, were produced, purified and identified by Raman spectroscopy, GC-mass spectrometry, and Fourier transform infrared spectroscopy, LC-mass spectrometry and Nuclear magnetic resonance spectroscopy. The C50 carotenoid bacterioruberin was found to be the predominant compound. Because cancer and viral hepatitis are serious diseases, the anticancer, anti-HCV and anti-HBV potentials of these extracted carotenoids (pigments) were examined for the first time. In vitro results indicated that the caspase-mediated apoptotic anticancer effect of this pigment and its inhibitory efficacy against matrix metalloprotease 9 were significantly higher than those of 5-fluorouracil. Furthermore, the extracted pigment exhibited significantly stronger activity for eliminating HCV and HBV in infected human blood mononuclear cells than currently used drugs. This antiviral activity may be attributed to its inhibitory potential against HCV RNA and HBV DNA polymerases, which thereby suppresses HCV and HBV replication, as indicated by a high viral clearance % in the treated cells. These novel findings suggest that the C50 carotenoid of Natrialba sp. M6 can be used as an alternative source of natural metabolites that confer potent anticancer and antiviral activities.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Carotenoids/pharmacology , Erythrocytes/drug effects , Fibroblasts/drug effects , Halobacteriaceae , Carotenoids/isolation & purification , Cell Line , Humans , Mass Spectrometry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
16.
Int J Biol Macromol ; 144: 198-207, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31843613

ABSTRACT

Optimization of the culture parameters used for biocellulose (BC) production by a previously isolated bacterial strain (Komagataeibacter hansenii AS.5) was carried out. The effect of nine culture parameters on BC production was evaluated by implementing the Plackett-Burman design, and the results revealed that, the most significant variables affecting BC production were MgSO4, ethanol, pH and yeast extract. A three-level and four-factor Box-Behnken design was applied to determine the optimum level of each significant variable. According to the results of the Plackett-Burman (PBD) and Box-Behnken designs (BBD), the following medium composition and parameters were calculated to be optimum (g/l): glucose 25, yeast extract 13, MgSO4 0.15, KH2PO4 2, ethanol 7.18 ml/l, pH 5.5, inoclume size 7%, cultivation temperature 20 °C and incubation time 9 days. Characterization of purified BC was performed to determine the network morphology by scanning electron microscopy, crystallinity by X-ray diffraction, chemical structure and functional groups by Fourier-transform infrared spectroscopy, thermal stability by thermogravimetric analysis and mechanical properties such as Young's modulus, tensile strength and elongation at beak % of BC.


Subject(s)
Acetobacteraceae/metabolism , Cellulose/biosynthesis , Cellulose/isolation & purification , Cellulose/ultrastructure , Culture Media , Glucose/metabolism , Mechanical Phenomena , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Temperature , Tensile Strength , Thermogravimetry , X-Ray Diffraction
17.
J Genet Eng Biotechnol ; 16(2): 409-420, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30733754

ABSTRACT

Pseudomonas sp. sp48, a marine bacterium isolated from Bahary area (Alexandria, Egypt), showed a high potency for oil degradation up to 1.5%. Additionally, it showed an ability to consume aromatic hydrocarbons (phenol & naphthalene) and aliphatic (pentadecane) reaching to 79; 73; 62%, respectively. In the current study, Plackett-Burman factorial design was applied to evaluate culture conditions affecting the degradation potency. Analysis of Plackett-Burman design results revealed that, the most significant variables affecting oil removal were magnesium sulfate, inoculum size, glucose and Triton X-100. To optimize the levels of these significant variables Response Surface Methodology (RSM) was followed. In this respect, the three-level Box-Behnken design was employed and a polynomial model was created to correlate the relationship between the three variables and oil removal. The optimal combinations of the major constituents of media that was evaluated from the non-linear optimization algorithm of EXCEL-Solver was as follows: (w/v%) 1 crude oil, 0.5 peptone, 0.5 yeast-extract, 1 ammonium chloride, 0.7418 D-glucose, 0.5 MgSO4·7H2O, 0.1 Triton X-100 and inoculums size 4.18 ml% in natural sea water at pH 7; 30 °C incubation temperature, 200 rpm for 6 days. The predicted optimum oil removal was 89%, which is 2.4 times more than the basal medium.

18.
Sci Rep ; 7: 45297, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28349997

ABSTRACT

Development of reliable and low-cost requirement for large-scale eco-friendly biogenic synthesis of metallic nanoparticles is an important step for industrial applications of bionanotechnology. In the present study, the mycosynthesis of spherical nano-Ag (12.7 ± 0.8 nm) from extracellular filtrate of local endophytic T. harzianum SYA.F4 strain which have interested mixed bioactive metabolites (alkaloids, flavonoids, tannins, phenols, nitrate reductase (320 nmol/hr/ml), carbohydrate (25 µg/µl) and total protein concentration (2.5 g/l) was reported. Industrial mycosynthesis of nano-Ag can be induced with different characters depending on the fungal cultivation and physical conditions. Taguchi design was applied to improve the physicochemical conditions for nano-Ag production, and the optimum conditions which increased its mass weight 3 times larger than a basal condition were as follows: AgNO3 (0.01 M), diluted reductant (10 v/v, pH 5) and incubated at 30 °C, 200 rpm for 24 hr. Kinetic conversion rates in submerged batch cultivation in 7 L stirred tank bioreactor on using semi-defined cultivation medium was as follows: the maximum biomass production (Xmax) and maximum nano-Ag mass weight (Pmax) calculated (60.5 g/l and 78.4 g/l respectively). The best nano-Ag concentration that formed large inhibition zones was 100 µg/ml which showed against A.alternate (43 mm) followed by Helminthosporium sp. (35 mm), Botrytis sp. (32 mm) and P. arenaria (28 mm).


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Trichoderma/metabolism , Biomass , Bioreactors , Carbohydrates/analysis , Fungal Proteins/analysis , Fungal Proteins/metabolism , Green Chemistry Technology , Kinetics , Solanum lycopersicum/microbiology , Nitrate Reductase/analysis , Nitrate Reductase/metabolism , Particle Size , Phylogeny , Phytochemicals/analysis , Silver Nitrate/chemistry , Spectrometry, X-Ray Emission , Trichoderma/classification , Trichoderma/isolation & purification
19.
Biomed Res Int ; 2015: 981829, 2015.
Article in English | MEDLINE | ID: mdl-26273661

ABSTRACT

Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Geologic Sediments/microbiology , Microbial Consortia , Water Microbiology , Biodegradation, Environmental , Biodiversity , Egypt , Mediterranean Sea , Water Purification/methods
20.
Sci Rep ; 5: 11651, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26119183

ABSTRACT

Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.


Subject(s)
Bacteria/growth & development , Geologic Sediments/microbiology , Petroleum Pollution , Petroleum/microbiology , Temperature , Aerobiosis , Anaerobiosis , Bacteria/genetics , Biodegradation, Environmental , Computer Simulation , Genes, Bacterial , Mediterranean Region , Metabolome , Metabolomics , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...